Review



mwreg30 mca2245f cd80 fitc  (Bio-Rad)


Bioz Verified Symbol Bio-Rad is a verified supplier  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 93

    Structured Review

    Bio-Rad mwreg30 mca2245f cd80 fitc
    Mwreg30 Mca2245f Cd80 Fitc, supplied by Bio-Rad, used in various techniques. Bioz Stars score: 93/100, based on 108 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/mwreg30 mca2245f cd80 fitc/product/Bio-Rad
    Average 93 stars, based on 108 article reviews
    mwreg30 mca2245f cd80 fitc - by Bioz Stars, 2026-02
    93/100 stars

    Images



    Similar Products

    90
    Miltenyi Biotec cd42b
    Cd42b, supplied by Miltenyi Biotec, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/cd42b/product/Miltenyi Biotec
    Average 90 stars, based on 1 article reviews
    cd42b - by Bioz Stars, 2026-02
    90/100 stars
      Buy from Supplier

    94
    Proteintech primary antibodies against cd41
    18 Fr puncture of hemostasis in porcine aorta using VWP by validating the memory programming effect of each part. a, As a challenging model for application of large-diameter catheters, i) an 18 Fr (6 mm) puncture is created into the porcine thoracic aorta (diameter: 10 mm) so that the size-matched VWP is deployed, followed by measuring proximal and distal blood pressure. ii) The experimental groups are designed first to exam the memory programming effect of collaboration between Ring squeezing with Body expansion on self-locking (SL) to enable efficient hemostasis. Next, the effect of Wing shape recovery from curve to flat is examined on hemodynamic control (HC) in cooperation with the actions of Body and Ring to handle hemostasis. No recovery of Wing shape is expected to induce excessive thrombosis. iii) Four experimental groups are established using a total of 12 pigs (N = 12) with immediate sacrifice following deployment (N = 3 each). Group 1 [SL(−) HC(−)] represents no memory programming. Group 2 [SL(+) w/flat Wing] has the effects of Body and Ring actions except the hemostatic sealing by keeping the flat Wing. Group 3 [SL(+) HC(+)] possesses the complete memory effects of the three parts. Group 4 [SL(+) w/bump Wing] is expected to have excessive thrombosis because of no shape recovery from the curved Wing while maintaining the memory actions of Body and Wing. b, Each group is visually explained in the illustrations. c , In VWP actions, (left) the bleeding condition preserves the normal sinusoidal waveform of high proximal pressure (green) in contrast to the disturbed waveform of low distal pressure (red). (middle) Hemostatic closure results in similar high sinusoidal waveform at both pressure sites. (right) Excessive thrombosis does not disturb the waveform, but the distal pressure level becomes lower than the proximal one. d, When reperfusion starts by removing the clamp post-deployment (blue), only Group 3 [SL(+) HC(+)] reaches the hemostatic closure, as evidenced by flow stabilization (red) with a 5 s plateau at both pressure sites. Group 4 [SL(+) w/bump Wing] exhibits the pattern of over-thrombosis. e, H&E images show bleeding in Group 1 as an indication of incomplete closure in contrast to moderate, minimal, and dense thrombotic features observed in Group 2, 3, and 4 respectively as further supported by the signals of activated platelets (green, <t>CD41-positive)</t> and fibrinogen (red) [Scale bars = 0.5 mm (4 mm in box)]. f, Compared to Group 1 [SL(−) HC(−)] and 2 [SL(+) w/flat Wing], Group 3 [SL(+) HC(+)] shows the fastest i) hemostasis and ii) arterial pressure equilibration, indicating the most efficient hemostatic response. g, These outcomes in Group 3 include i) the smallest difference between the proximal and distal pressures with ii) the smallest thrombus area in contrast the largest area of Group 4 [SL(+) w/bump Wing] as an indication of excessive thrombosis. h , The marker gene expression of thrombotic feature (vWF, PF-4, and P-sel) significantly increases from Group 2 to Group 3 and further to Group 4 except the comparison of vWF expression between Group 2 and 3 (ns: no significance). Data are shown as mean ± SD, N = 3 biologically independent animals per group. Significance was determined using one-way ANOVA with Tukey's test between groups.
    Primary Antibodies Against Cd41, supplied by Proteintech, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/primary antibodies against cd41/product/Proteintech
    Average 94 stars, based on 1 article reviews
    primary antibodies against cd41 - by Bioz Stars, 2026-02
    94/100 stars
      Buy from Supplier

    94
    Biorbyt integrin αiib
    18 Fr puncture of hemostasis in porcine aorta using VWP by validating the memory programming effect of each part. a, As a challenging model for application of large-diameter catheters, i) an 18 Fr (6 mm) puncture is created into the porcine thoracic aorta (diameter: 10 mm) so that the size-matched VWP is deployed, followed by measuring proximal and distal blood pressure. ii) The experimental groups are designed first to exam the memory programming effect of collaboration between Ring squeezing with Body expansion on self-locking (SL) to enable efficient hemostasis. Next, the effect of Wing shape recovery from curve to flat is examined on hemodynamic control (HC) in cooperation with the actions of Body and Ring to handle hemostasis. No recovery of Wing shape is expected to induce excessive thrombosis. iii) Four experimental groups are established using a total of 12 pigs (N = 12) with immediate sacrifice following deployment (N = 3 each). Group 1 [SL(−) HC(−)] represents no memory programming. Group 2 [SL(+) w/flat Wing] has the effects of Body and Ring actions except the hemostatic sealing by keeping the flat Wing. Group 3 [SL(+) HC(+)] possesses the complete memory effects of the three parts. Group 4 [SL(+) w/bump Wing] is expected to have excessive thrombosis because of no shape recovery from the curved Wing while maintaining the memory actions of Body and Wing. b, Each group is visually explained in the illustrations. c , In VWP actions, (left) the bleeding condition preserves the normal sinusoidal waveform of high proximal pressure (green) in contrast to the disturbed waveform of low distal pressure (red). (middle) Hemostatic closure results in similar high sinusoidal waveform at both pressure sites. (right) Excessive thrombosis does not disturb the waveform, but the distal pressure level becomes lower than the proximal one. d, When reperfusion starts by removing the clamp post-deployment (blue), only Group 3 [SL(+) HC(+)] reaches the hemostatic closure, as evidenced by flow stabilization (red) with a 5 s plateau at both pressure sites. Group 4 [SL(+) w/bump Wing] exhibits the pattern of over-thrombosis. e, H&E images show bleeding in Group 1 as an indication of incomplete closure in contrast to moderate, minimal, and dense thrombotic features observed in Group 2, 3, and 4 respectively as further supported by the signals of activated platelets (green, <t>CD41-positive)</t> and fibrinogen (red) [Scale bars = 0.5 mm (4 mm in box)]. f, Compared to Group 1 [SL(−) HC(−)] and 2 [SL(+) w/flat Wing], Group 3 [SL(+) HC(+)] shows the fastest i) hemostasis and ii) arterial pressure equilibration, indicating the most efficient hemostatic response. g, These outcomes in Group 3 include i) the smallest difference between the proximal and distal pressures with ii) the smallest thrombus area in contrast the largest area of Group 4 [SL(+) w/bump Wing] as an indication of excessive thrombosis. h , The marker gene expression of thrombotic feature (vWF, PF-4, and P-sel) significantly increases from Group 2 to Group 3 and further to Group 4 except the comparison of vWF expression between Group 2 and 3 (ns: no significance). Data are shown as mean ± SD, N = 3 biologically independent animals per group. Significance was determined using one-way ANOVA with Tukey's test between groups.
    Integrin αiib, supplied by Biorbyt, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/integrin αiib/product/Biorbyt
    Average 94 stars, based on 1 article reviews
    integrin αiib - by Bioz Stars, 2026-02
    94/100 stars
      Buy from Supplier

    97
    Miltenyi Biotec 30f11 1 130 116 535 cd41 fitc
    18 Fr puncture of hemostasis in porcine aorta using VWP by validating the memory programming effect of each part. a, As a challenging model for application of large-diameter catheters, i) an 18 Fr (6 mm) puncture is created into the porcine thoracic aorta (diameter: 10 mm) so that the size-matched VWP is deployed, followed by measuring proximal and distal blood pressure. ii) The experimental groups are designed first to exam the memory programming effect of collaboration between Ring squeezing with Body expansion on self-locking (SL) to enable efficient hemostasis. Next, the effect of Wing shape recovery from curve to flat is examined on hemodynamic control (HC) in cooperation with the actions of Body and Ring to handle hemostasis. No recovery of Wing shape is expected to induce excessive thrombosis. iii) Four experimental groups are established using a total of 12 pigs (N = 12) with immediate sacrifice following deployment (N = 3 each). Group 1 [SL(−) HC(−)] represents no memory programming. Group 2 [SL(+) w/flat Wing] has the effects of Body and Ring actions except the hemostatic sealing by keeping the flat Wing. Group 3 [SL(+) HC(+)] possesses the complete memory effects of the three parts. Group 4 [SL(+) w/bump Wing] is expected to have excessive thrombosis because of no shape recovery from the curved Wing while maintaining the memory actions of Body and Wing. b, Each group is visually explained in the illustrations. c , In VWP actions, (left) the bleeding condition preserves the normal sinusoidal waveform of high proximal pressure (green) in contrast to the disturbed waveform of low distal pressure (red). (middle) Hemostatic closure results in similar high sinusoidal waveform at both pressure sites. (right) Excessive thrombosis does not disturb the waveform, but the distal pressure level becomes lower than the proximal one. d, When reperfusion starts by removing the clamp post-deployment (blue), only Group 3 [SL(+) HC(+)] reaches the hemostatic closure, as evidenced by flow stabilization (red) with a 5 s plateau at both pressure sites. Group 4 [SL(+) w/bump Wing] exhibits the pattern of over-thrombosis. e, H&E images show bleeding in Group 1 as an indication of incomplete closure in contrast to moderate, minimal, and dense thrombotic features observed in Group 2, 3, and 4 respectively as further supported by the signals of activated platelets (green, <t>CD41-positive)</t> and fibrinogen (red) [Scale bars = 0.5 mm (4 mm in box)]. f, Compared to Group 1 [SL(−) HC(−)] and 2 [SL(+) w/flat Wing], Group 3 [SL(+) HC(+)] shows the fastest i) hemostasis and ii) arterial pressure equilibration, indicating the most efficient hemostatic response. g, These outcomes in Group 3 include i) the smallest difference between the proximal and distal pressures with ii) the smallest thrombus area in contrast the largest area of Group 4 [SL(+) w/bump Wing] as an indication of excessive thrombosis. h , The marker gene expression of thrombotic feature (vWF, PF-4, and P-sel) significantly increases from Group 2 to Group 3 and further to Group 4 except the comparison of vWF expression between Group 2 and 3 (ns: no significance). Data are shown as mean ± SD, N = 3 biologically independent animals per group. Significance was determined using one-way ANOVA with Tukey's test between groups.
    30f11 1 130 116 535 Cd41 Fitc, supplied by Miltenyi Biotec, used in various techniques. Bioz Stars score: 97/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/30f11 1 130 116 535 cd41 fitc/product/Miltenyi Biotec
    Average 97 stars, based on 1 article reviews
    30f11 1 130 116 535 cd41 fitc - by Bioz Stars, 2026-02
    97/100 stars
      Buy from Supplier

    93
    Bio-Rad mwreg30 mca2245f cd80 fitc
    18 Fr puncture of hemostasis in porcine aorta using VWP by validating the memory programming effect of each part. a, As a challenging model for application of large-diameter catheters, i) an 18 Fr (6 mm) puncture is created into the porcine thoracic aorta (diameter: 10 mm) so that the size-matched VWP is deployed, followed by measuring proximal and distal blood pressure. ii) The experimental groups are designed first to exam the memory programming effect of collaboration between Ring squeezing with Body expansion on self-locking (SL) to enable efficient hemostasis. Next, the effect of Wing shape recovery from curve to flat is examined on hemodynamic control (HC) in cooperation with the actions of Body and Ring to handle hemostasis. No recovery of Wing shape is expected to induce excessive thrombosis. iii) Four experimental groups are established using a total of 12 pigs (N = 12) with immediate sacrifice following deployment (N = 3 each). Group 1 [SL(−) HC(−)] represents no memory programming. Group 2 [SL(+) w/flat Wing] has the effects of Body and Ring actions except the hemostatic sealing by keeping the flat Wing. Group 3 [SL(+) HC(+)] possesses the complete memory effects of the three parts. Group 4 [SL(+) w/bump Wing] is expected to have excessive thrombosis because of no shape recovery from the curved Wing while maintaining the memory actions of Body and Wing. b, Each group is visually explained in the illustrations. c , In VWP actions, (left) the bleeding condition preserves the normal sinusoidal waveform of high proximal pressure (green) in contrast to the disturbed waveform of low distal pressure (red). (middle) Hemostatic closure results in similar high sinusoidal waveform at both pressure sites. (right) Excessive thrombosis does not disturb the waveform, but the distal pressure level becomes lower than the proximal one. d, When reperfusion starts by removing the clamp post-deployment (blue), only Group 3 [SL(+) HC(+)] reaches the hemostatic closure, as evidenced by flow stabilization (red) with a 5 s plateau at both pressure sites. Group 4 [SL(+) w/bump Wing] exhibits the pattern of over-thrombosis. e, H&E images show bleeding in Group 1 as an indication of incomplete closure in contrast to moderate, minimal, and dense thrombotic features observed in Group 2, 3, and 4 respectively as further supported by the signals of activated platelets (green, <t>CD41-positive)</t> and fibrinogen (red) [Scale bars = 0.5 mm (4 mm in box)]. f, Compared to Group 1 [SL(−) HC(−)] and 2 [SL(+) w/flat Wing], Group 3 [SL(+) HC(+)] shows the fastest i) hemostasis and ii) arterial pressure equilibration, indicating the most efficient hemostatic response. g, These outcomes in Group 3 include i) the smallest difference between the proximal and distal pressures with ii) the smallest thrombus area in contrast the largest area of Group 4 [SL(+) w/bump Wing] as an indication of excessive thrombosis. h , The marker gene expression of thrombotic feature (vWF, PF-4, and P-sel) significantly increases from Group 2 to Group 3 and further to Group 4 except the comparison of vWF expression between Group 2 and 3 (ns: no significance). Data are shown as mean ± SD, N = 3 biologically independent animals per group. Significance was determined using one-way ANOVA with Tukey's test between groups.
    Mwreg30 Mca2245f Cd80 Fitc, supplied by Bio-Rad, used in various techniques. Bioz Stars score: 93/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/mwreg30 mca2245f cd80 fitc/product/Bio-Rad
    Average 93 stars, based on 1 article reviews
    mwreg30 mca2245f cd80 fitc - by Bioz Stars, 2026-02
    93/100 stars
      Buy from Supplier

    94
    Proteintech rabbit anti cd41 antibodies
    18 Fr puncture of hemostasis in porcine aorta using VWP by validating the memory programming effect of each part. a, As a challenging model for application of large-diameter catheters, i) an 18 Fr (6 mm) puncture is created into the porcine thoracic aorta (diameter: 10 mm) so that the size-matched VWP is deployed, followed by measuring proximal and distal blood pressure. ii) The experimental groups are designed first to exam the memory programming effect of collaboration between Ring squeezing with Body expansion on self-locking (SL) to enable efficient hemostasis. Next, the effect of Wing shape recovery from curve to flat is examined on hemodynamic control (HC) in cooperation with the actions of Body and Ring to handle hemostasis. No recovery of Wing shape is expected to induce excessive thrombosis. iii) Four experimental groups are established using a total of 12 pigs (N = 12) with immediate sacrifice following deployment (N = 3 each). Group 1 [SL(−) HC(−)] represents no memory programming. Group 2 [SL(+) w/flat Wing] has the effects of Body and Ring actions except the hemostatic sealing by keeping the flat Wing. Group 3 [SL(+) HC(+)] possesses the complete memory effects of the three parts. Group 4 [SL(+) w/bump Wing] is expected to have excessive thrombosis because of no shape recovery from the curved Wing while maintaining the memory actions of Body and Wing. b, Each group is visually explained in the illustrations. c , In VWP actions, (left) the bleeding condition preserves the normal sinusoidal waveform of high proximal pressure (green) in contrast to the disturbed waveform of low distal pressure (red). (middle) Hemostatic closure results in similar high sinusoidal waveform at both pressure sites. (right) Excessive thrombosis does not disturb the waveform, but the distal pressure level becomes lower than the proximal one. d, When reperfusion starts by removing the clamp post-deployment (blue), only Group 3 [SL(+) HC(+)] reaches the hemostatic closure, as evidenced by flow stabilization (red) with a 5 s plateau at both pressure sites. Group 4 [SL(+) w/bump Wing] exhibits the pattern of over-thrombosis. e, H&E images show bleeding in Group 1 as an indication of incomplete closure in contrast to moderate, minimal, and dense thrombotic features observed in Group 2, 3, and 4 respectively as further supported by the signals of activated platelets (green, <t>CD41-positive)</t> and fibrinogen (red) [Scale bars = 0.5 mm (4 mm in box)]. f, Compared to Group 1 [SL(−) HC(−)] and 2 [SL(+) w/flat Wing], Group 3 [SL(+) HC(+)] shows the fastest i) hemostasis and ii) arterial pressure equilibration, indicating the most efficient hemostatic response. g, These outcomes in Group 3 include i) the smallest difference between the proximal and distal pressures with ii) the smallest thrombus area in contrast the largest area of Group 4 [SL(+) w/bump Wing] as an indication of excessive thrombosis. h , The marker gene expression of thrombotic feature (vWF, PF-4, and P-sel) significantly increases from Group 2 to Group 3 and further to Group 4 except the comparison of vWF expression between Group 2 and 3 (ns: no significance). Data are shown as mean ± SD, N = 3 biologically independent animals per group. Significance was determined using one-way ANOVA with Tukey's test between groups.
    Rabbit Anti Cd41 Antibodies, supplied by Proteintech, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rabbit anti cd41 antibodies/product/Proteintech
    Average 94 stars, based on 1 article reviews
    rabbit anti cd41 antibodies - by Bioz Stars, 2026-02
    94/100 stars
      Buy from Supplier

    94
    Miltenyi Biotec 732 miltenyi rat igg2bκ 0 25 cd41 af488 mem 06 a4 309 t100 exbio mouse igg1
    18 Fr puncture of hemostasis in porcine aorta using VWP by validating the memory programming effect of each part. a, As a challenging model for application of large-diameter catheters, i) an 18 Fr (6 mm) puncture is created into the porcine thoracic aorta (diameter: 10 mm) so that the size-matched VWP is deployed, followed by measuring proximal and distal blood pressure. ii) The experimental groups are designed first to exam the memory programming effect of collaboration between Ring squeezing with Body expansion on self-locking (SL) to enable efficient hemostasis. Next, the effect of Wing shape recovery from curve to flat is examined on hemodynamic control (HC) in cooperation with the actions of Body and Ring to handle hemostasis. No recovery of Wing shape is expected to induce excessive thrombosis. iii) Four experimental groups are established using a total of 12 pigs (N = 12) with immediate sacrifice following deployment (N = 3 each). Group 1 [SL(−) HC(−)] represents no memory programming. Group 2 [SL(+) w/flat Wing] has the effects of Body and Ring actions except the hemostatic sealing by keeping the flat Wing. Group 3 [SL(+) HC(+)] possesses the complete memory effects of the three parts. Group 4 [SL(+) w/bump Wing] is expected to have excessive thrombosis because of no shape recovery from the curved Wing while maintaining the memory actions of Body and Wing. b, Each group is visually explained in the illustrations. c , In VWP actions, (left) the bleeding condition preserves the normal sinusoidal waveform of high proximal pressure (green) in contrast to the disturbed waveform of low distal pressure (red). (middle) Hemostatic closure results in similar high sinusoidal waveform at both pressure sites. (right) Excessive thrombosis does not disturb the waveform, but the distal pressure level becomes lower than the proximal one. d, When reperfusion starts by removing the clamp post-deployment (blue), only Group 3 [SL(+) HC(+)] reaches the hemostatic closure, as evidenced by flow stabilization (red) with a 5 s plateau at both pressure sites. Group 4 [SL(+) w/bump Wing] exhibits the pattern of over-thrombosis. e, H&E images show bleeding in Group 1 as an indication of incomplete closure in contrast to moderate, minimal, and dense thrombotic features observed in Group 2, 3, and 4 respectively as further supported by the signals of activated platelets (green, <t>CD41-positive)</t> and fibrinogen (red) [Scale bars = 0.5 mm (4 mm in box)]. f, Compared to Group 1 [SL(−) HC(−)] and 2 [SL(+) w/flat Wing], Group 3 [SL(+) HC(+)] shows the fastest i) hemostasis and ii) arterial pressure equilibration, indicating the most efficient hemostatic response. g, These outcomes in Group 3 include i) the smallest difference between the proximal and distal pressures with ii) the smallest thrombus area in contrast the largest area of Group 4 [SL(+) w/bump Wing] as an indication of excessive thrombosis. h , The marker gene expression of thrombotic feature (vWF, PF-4, and P-sel) significantly increases from Group 2 to Group 3 and further to Group 4 except the comparison of vWF expression between Group 2 and 3 (ns: no significance). Data are shown as mean ± SD, N = 3 biologically independent animals per group. Significance was determined using one-way ANOVA with Tukey's test between groups.
    732 Miltenyi Rat Igg2bκ 0 25 Cd41 Af488 Mem 06 A4 309 T100 Exbio Mouse Igg1, supplied by Miltenyi Biotec, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/732 miltenyi rat igg2bκ 0 25 cd41 af488 mem 06 a4 309 t100 exbio mouse igg1/product/Miltenyi Biotec
    Average 94 stars, based on 1 article reviews
    732 miltenyi rat igg2bκ 0 25 cd41 af488 mem 06 a4 309 t100 exbio mouse igg1 - by Bioz Stars, 2026-02
    94/100 stars
      Buy from Supplier

    Image Search Results


    18 Fr puncture of hemostasis in porcine aorta using VWP by validating the memory programming effect of each part. a, As a challenging model for application of large-diameter catheters, i) an 18 Fr (6 mm) puncture is created into the porcine thoracic aorta (diameter: 10 mm) so that the size-matched VWP is deployed, followed by measuring proximal and distal blood pressure. ii) The experimental groups are designed first to exam the memory programming effect of collaboration between Ring squeezing with Body expansion on self-locking (SL) to enable efficient hemostasis. Next, the effect of Wing shape recovery from curve to flat is examined on hemodynamic control (HC) in cooperation with the actions of Body and Ring to handle hemostasis. No recovery of Wing shape is expected to induce excessive thrombosis. iii) Four experimental groups are established using a total of 12 pigs (N = 12) with immediate sacrifice following deployment (N = 3 each). Group 1 [SL(−) HC(−)] represents no memory programming. Group 2 [SL(+) w/flat Wing] has the effects of Body and Ring actions except the hemostatic sealing by keeping the flat Wing. Group 3 [SL(+) HC(+)] possesses the complete memory effects of the three parts. Group 4 [SL(+) w/bump Wing] is expected to have excessive thrombosis because of no shape recovery from the curved Wing while maintaining the memory actions of Body and Wing. b, Each group is visually explained in the illustrations. c , In VWP actions, (left) the bleeding condition preserves the normal sinusoidal waveform of high proximal pressure (green) in contrast to the disturbed waveform of low distal pressure (red). (middle) Hemostatic closure results in similar high sinusoidal waveform at both pressure sites. (right) Excessive thrombosis does not disturb the waveform, but the distal pressure level becomes lower than the proximal one. d, When reperfusion starts by removing the clamp post-deployment (blue), only Group 3 [SL(+) HC(+)] reaches the hemostatic closure, as evidenced by flow stabilization (red) with a 5 s plateau at both pressure sites. Group 4 [SL(+) w/bump Wing] exhibits the pattern of over-thrombosis. e, H&E images show bleeding in Group 1 as an indication of incomplete closure in contrast to moderate, minimal, and dense thrombotic features observed in Group 2, 3, and 4 respectively as further supported by the signals of activated platelets (green, CD41-positive) and fibrinogen (red) [Scale bars = 0.5 mm (4 mm in box)]. f, Compared to Group 1 [SL(−) HC(−)] and 2 [SL(+) w/flat Wing], Group 3 [SL(+) HC(+)] shows the fastest i) hemostasis and ii) arterial pressure equilibration, indicating the most efficient hemostatic response. g, These outcomes in Group 3 include i) the smallest difference between the proximal and distal pressures with ii) the smallest thrombus area in contrast the largest area of Group 4 [SL(+) w/bump Wing] as an indication of excessive thrombosis. h , The marker gene expression of thrombotic feature (vWF, PF-4, and P-sel) significantly increases from Group 2 to Group 3 and further to Group 4 except the comparison of vWF expression between Group 2 and 3 (ns: no significance). Data are shown as mean ± SD, N = 3 biologically independent animals per group. Significance was determined using one-way ANOVA with Tukey's test between groups.

    Journal: Bioactive Materials

    Article Title: A large puncture closer of aortic wall by multi-memory actions with thrombo-hemodynamic control

    doi: 10.1016/j.bioactmat.2025.12.042

    Figure Lengend Snippet: 18 Fr puncture of hemostasis in porcine aorta using VWP by validating the memory programming effect of each part. a, As a challenging model for application of large-diameter catheters, i) an 18 Fr (6 mm) puncture is created into the porcine thoracic aorta (diameter: 10 mm) so that the size-matched VWP is deployed, followed by measuring proximal and distal blood pressure. ii) The experimental groups are designed first to exam the memory programming effect of collaboration between Ring squeezing with Body expansion on self-locking (SL) to enable efficient hemostasis. Next, the effect of Wing shape recovery from curve to flat is examined on hemodynamic control (HC) in cooperation with the actions of Body and Ring to handle hemostasis. No recovery of Wing shape is expected to induce excessive thrombosis. iii) Four experimental groups are established using a total of 12 pigs (N = 12) with immediate sacrifice following deployment (N = 3 each). Group 1 [SL(−) HC(−)] represents no memory programming. Group 2 [SL(+) w/flat Wing] has the effects of Body and Ring actions except the hemostatic sealing by keeping the flat Wing. Group 3 [SL(+) HC(+)] possesses the complete memory effects of the three parts. Group 4 [SL(+) w/bump Wing] is expected to have excessive thrombosis because of no shape recovery from the curved Wing while maintaining the memory actions of Body and Wing. b, Each group is visually explained in the illustrations. c , In VWP actions, (left) the bleeding condition preserves the normal sinusoidal waveform of high proximal pressure (green) in contrast to the disturbed waveform of low distal pressure (red). (middle) Hemostatic closure results in similar high sinusoidal waveform at both pressure sites. (right) Excessive thrombosis does not disturb the waveform, but the distal pressure level becomes lower than the proximal one. d, When reperfusion starts by removing the clamp post-deployment (blue), only Group 3 [SL(+) HC(+)] reaches the hemostatic closure, as evidenced by flow stabilization (red) with a 5 s plateau at both pressure sites. Group 4 [SL(+) w/bump Wing] exhibits the pattern of over-thrombosis. e, H&E images show bleeding in Group 1 as an indication of incomplete closure in contrast to moderate, minimal, and dense thrombotic features observed in Group 2, 3, and 4 respectively as further supported by the signals of activated platelets (green, CD41-positive) and fibrinogen (red) [Scale bars = 0.5 mm (4 mm in box)]. f, Compared to Group 1 [SL(−) HC(−)] and 2 [SL(+) w/flat Wing], Group 3 [SL(+) HC(+)] shows the fastest i) hemostasis and ii) arterial pressure equilibration, indicating the most efficient hemostatic response. g, These outcomes in Group 3 include i) the smallest difference between the proximal and distal pressures with ii) the smallest thrombus area in contrast the largest area of Group 4 [SL(+) w/bump Wing] as an indication of excessive thrombosis. h , The marker gene expression of thrombotic feature (vWF, PF-4, and P-sel) significantly increases from Group 2 to Group 3 and further to Group 4 except the comparison of vWF expression between Group 2 and 3 (ns: no significance). Data are shown as mean ± SD, N = 3 biologically independent animals per group. Significance was determined using one-way ANOVA with Tukey's test between groups.

    Article Snippet: Primary antibodies against CD41 (1:100, 24552-1-AP, proteintech), fibrinogen (1:100, ab232793, Abcam), CD31 (1:100, sc-376764, Santa Cruz Biotechnology), CD68 (1:100, ab125212, Abcam), and ARG-1 (1:200, LS-C447907, LSBio) were applied overnight at 4°C.

    Techniques: Control, Marker, Gene Expression, Comparison, Expressing