Journal: Bioactive Materials
Article Title: A large puncture closer of aortic wall by multi-memory actions with thrombo-hemodynamic control
doi: 10.1016/j.bioactmat.2025.12.042
Figure Lengend Snippet: 18 Fr puncture of hemostasis in porcine aorta using VWP by validating the memory programming effect of each part. a, As a challenging model for application of large-diameter catheters, i) an 18 Fr (6 mm) puncture is created into the porcine thoracic aorta (diameter: 10 mm) so that the size-matched VWP is deployed, followed by measuring proximal and distal blood pressure. ii) The experimental groups are designed first to exam the memory programming effect of collaboration between Ring squeezing with Body expansion on self-locking (SL) to enable efficient hemostasis. Next, the effect of Wing shape recovery from curve to flat is examined on hemodynamic control (HC) in cooperation with the actions of Body and Ring to handle hemostasis. No recovery of Wing shape is expected to induce excessive thrombosis. iii) Four experimental groups are established using a total of 12 pigs (N = 12) with immediate sacrifice following deployment (N = 3 each). Group 1 [SL(−) HC(−)] represents no memory programming. Group 2 [SL(+) w/flat Wing] has the effects of Body and Ring actions except the hemostatic sealing by keeping the flat Wing. Group 3 [SL(+) HC(+)] possesses the complete memory effects of the three parts. Group 4 [SL(+) w/bump Wing] is expected to have excessive thrombosis because of no shape recovery from the curved Wing while maintaining the memory actions of Body and Wing. b, Each group is visually explained in the illustrations. c , In VWP actions, (left) the bleeding condition preserves the normal sinusoidal waveform of high proximal pressure (green) in contrast to the disturbed waveform of low distal pressure (red). (middle) Hemostatic closure results in similar high sinusoidal waveform at both pressure sites. (right) Excessive thrombosis does not disturb the waveform, but the distal pressure level becomes lower than the proximal one. d, When reperfusion starts by removing the clamp post-deployment (blue), only Group 3 [SL(+) HC(+)] reaches the hemostatic closure, as evidenced by flow stabilization (red) with a 5 s plateau at both pressure sites. Group 4 [SL(+) w/bump Wing] exhibits the pattern of over-thrombosis. e, H&E images show bleeding in Group 1 as an indication of incomplete closure in contrast to moderate, minimal, and dense thrombotic features observed in Group 2, 3, and 4 respectively as further supported by the signals of activated platelets (green, CD41-positive) and fibrinogen (red) [Scale bars = 0.5 mm (4 mm in box)]. f, Compared to Group 1 [SL(−) HC(−)] and 2 [SL(+) w/flat Wing], Group 3 [SL(+) HC(+)] shows the fastest i) hemostasis and ii) arterial pressure equilibration, indicating the most efficient hemostatic response. g, These outcomes in Group 3 include i) the smallest difference between the proximal and distal pressures with ii) the smallest thrombus area in contrast the largest area of Group 4 [SL(+) w/bump Wing] as an indication of excessive thrombosis. h , The marker gene expression of thrombotic feature (vWF, PF-4, and P-sel) significantly increases from Group 2 to Group 3 and further to Group 4 except the comparison of vWF expression between Group 2 and 3 (ns: no significance). Data are shown as mean ± SD, N = 3 biologically independent animals per group. Significance was determined using one-way ANOVA with Tukey's test between groups.
Article Snippet: Primary antibodies against CD41 (1:100, 24552-1-AP, proteintech), fibrinogen (1:100, ab232793, Abcam), CD31 (1:100, sc-376764, Santa Cruz Biotechnology), CD68 (1:100, ab125212, Abcam), and ARG-1 (1:200, LS-C447907, LSBio) were applied overnight at 4°C.
Techniques: Control, Marker, Gene Expression, Comparison, Expressing